

PROVINCIA DI CHIETI

PROGETTO DEFINITIVO

ADEGUAMENTO DELLE S.S. 81-84 TRATTO GUARDIAGRELE-EST INNESTO S.S. 652 "VAL DI SANGRO"

LOTTO I

RESPONSABILE PROGETTAZIONE:

Dott. Ing. Fabrizio Besozzi Iscritto Albo Ingegneri Provincia di Roma n° 15126

I PROGETTISTI:

Dott. Ing. Fabrizio Besozzi Iscritto Albo Ingegneri Provincia di Roma n° 15126

Prof. Dott. Ing. Marco Petrangeli Iscritto Albo Ingegneri Provincia di Roma n' 18744

Dott. Ing. Giovanni Zallocco Iscritto Albo Ingegneri Provincia di Roma n' 5745

COORDINAMENTO ATTIVITA' IN LOCO:

Dott. Arch. Mariano Strizzi Iscritto Albo Architetti Provincia di Chieti n' 97 PROGETTAZIONE:

A. T.I.

mandataria

Divisione Progettazione e Stud

mandanti

EM./RE.	DATA	DESCRIZIONE	REDATTO	CONTR.	APPROV.
0	SETTEMBRE'03	EMISSIONE	C.ANDREOCCI	G.USAI	M.PETRANGELI

OPERE D'ARTE MAGGIORI Viadotti

Viadotto Guardiagrele - Sottostrutture e fondazioni Relazione tecnica e di predimensionamento

SCALA : -

CODICE IDENTIFICATIVO :

FASE/LOTTO

DOC.

OPERA/DISCIPLINA

PROGR.

REV.

D 1

CL

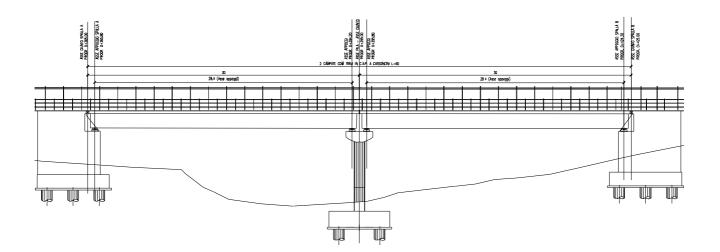
V I 0 2

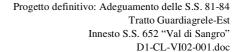
0 0 1

Α

INDICE

1.	PREN	MESSA	5
2.	NOR	MATIVE	6
3.	MAT	ERIALI IMPIEGATI	7
	3.1. 3.2.	CARATTERISTICHE	
4.	LA P	ILA FISSA E LA SUA FONDAZIONE	8
		Analisi sismica semplificata	12
5.	LE SI	PALLE	20
		SPALLA A	23
6.	VERI	FICHE GEOTECNICHE	29
	6.1. 6.2.	INQUADRAMENTO E SCHEMA GEOTECNICO	


1. Premessa


Nella presente relazione vengono riportati i calcoli e le verifiche relativi alle sottostrutture del viadotto Guardigrele, della Transcollinare Piceno-Aprutina.

Il viadotto in esame è composto da due campate in c.a.p. di 30 m, rese continue per mezzo della soletta gettata in opera, con il vincolo fisso longitudinale posizionato sulla pila, in modo da poter sfruttare in fase sismica la sua flessibilità, mentre trasversalmente sono fissi tutti gli all'ineamenti di appoggi sia sulla pila che sulle due spalle.

In merito alle spalle bisogna dire che esse verranno calcolate, almeno per quello che riguarda gli effetti globali, in modo adeguatamente approfondito, in quanto esse risentono in modo particolare delle azioni sismiche, essendo delle strutture molto rigide.

Per quanto riguarda la determinazione delle azioni al piano degli appoggi si rimanda alla relazione dell'impalcato (D1-CL-VI00-003.doc) in cui sono esplicitate le analisi dei carichi e sono determinate le sollecitazioni conseguenti; bisognerà svolgere un'integrazione delle analisi dei carichi e della determinazione delle azioni al piano appoggi in merito ad alcune azioni longitudinali all'impalcato, che non potevano essere determinate nella relazione generale dell'impalcato in quanto legate alla lunghezza complessiva delle campate solidarizzate con la soletta continua.

2. Normative

I calcoli sono stati eseguiti nel rispetto della seguente normativa italiana vigente:

- Legge 5-1-1971 n° 1086: "Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica"
- DM 4 Maggio 1990: "Aggiornamento delle norme tecniche per la progettazione, esecuzione e il collaudo dei ponti stradali
- D.M. del 9-1-1996 riguardante: "Norme tecniche per il calcolo, l'esecuzione e il collaudo delle strutture in cemento armato, normale e precompresso e per le strutture metalliche"
- D.M. del 16-1-1996 riguardante: "Norme tecniche relative ai criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi"
- Circolare del 4-7-1996 contenente le Istruzioni per l'applicazione delle "Norme tecniche relative ai criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi" di cui al D.M del 16-1-1996
- Circolare del 15-10-1996 contenente le Istruzioni per l'applicazione delle "Norme tecniche per il calcolo, l'esecuzione e il collaudo delle strutture in cemento armato, normale e precompresso e per le strutture metalliche" di cui al D.M. del 9-1-1996
- Ordinanza n. 3274 del 8-5-2003 riguardante: "Norme tecniche per il progetto sismico dei ponti"

Nella redazione dei progetti e nelle verifiche strutturali si è inoltre fatto riferimento alla normativa Europea:

 UNI ENV 1998-2: Eurocodice 8 – Indicazioni progettuali per la resistenza sismica delle strutture – Ponti

3. Materiali impiegati

3.1. Caratteristiche

- Calcestruzzo per le pile tipo Rck 40MPa
- Calcestruzzo per le spalle e le fondazioni tipo Rck 35MPa
- Calcestruzzo per i pali tipo Rck 25MPa
- Acciaio in barre FeB 44k

3.2. Tensioni di calcolo

• Calcestruzzo tipo Rck 40MPa

 $f_{ck} = 33.20 \text{ N/mm}^2$

 $f_{cd} = 20.75 \text{ N/mm}^2$

 $\sigma_{c,esercizio} = 19.92 \text{ N/mm}^2$

Stato limite

Calcestruzzo tipo Rck 35MPa

 $f_{ck} = 29.05 \text{ N/mm}^2$

 $f_{cd} = 18.16 \text{ N/mm}^2$

 $\sigma_{c,esercizio} = 17.43 \text{ N/mm}^2$

Stato limite

Calcestruzzo tipo Rck 25MPa

 $f_{ck} = 20.75 \text{ N/mm}^2$

 $f_{cd} = 12.97 \text{ N/mm}^2$

 $\sigma_{c,esercizio} = 12.45 \text{ N/mm}^2$

Stato limite

Acciaio in barre FeB 44k

 $f_{vk} = 430 \text{ N/mm}^2$

 $f_{tk} = 540 \text{ N/mm}^2$

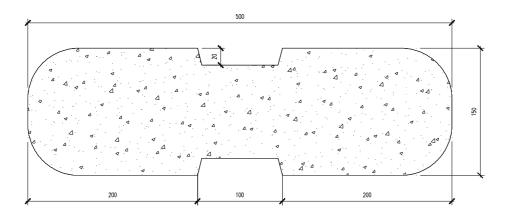
 $\sigma_{a.esercizio} = 301 \text{ N/mm}^2$

Stato limite

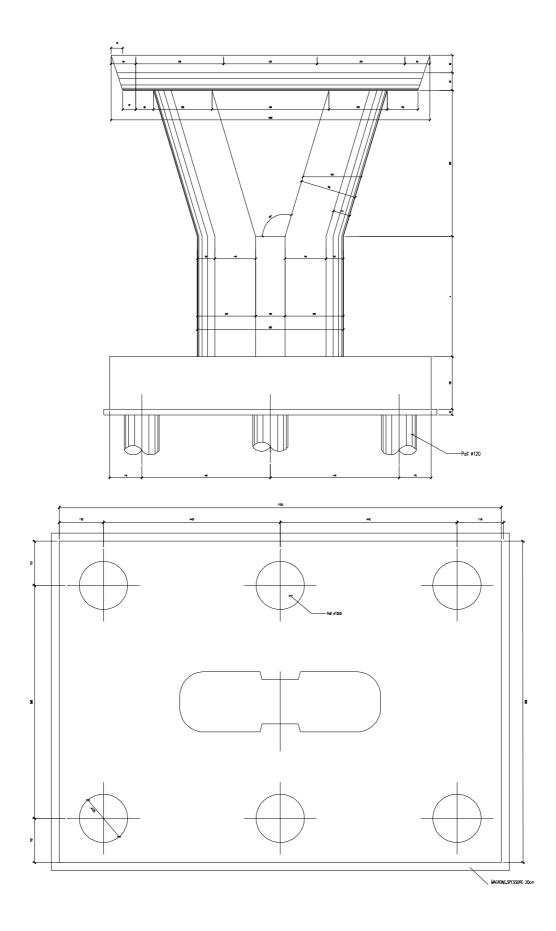
 $\sigma_{amm} = 255 \text{ N/mm}^2$

4. La pila fissa e la sua fondazione.

Per quanto riguarda l'analisi sismica si seguono le indicazioni esposte nella relazione "Linee guida Analisi Antisismica" (D1-AS-0000-001.doc), in particolare si utilizzeranno i valori di accelerazione al suolo a_g di 0.35g per lo S.L.U. e 0.2g per lo S.L.E..


Come abbiamo detto in precedenza per le azioni provenienti dall'impalcato si fa riferimento alla relazione D1-CL-VI00-003.doc, tranne che per le azioni longitudinali dovute all'attrito sugli appoggi (in particolare all'attrito differenziale sulla pila fissa) e alla frenatura.

Quindi nel caso in questione essendo l'impalcato continuo lungo 60 m, si è in possesso di tutti i dati necessari a determinare i valori delle azioni menzionate sopra; inoltre bisogna precisare che è stato utilizzato un valore del coefficiente di attrito sugli appoggi pari al 5%.


- Attrito differenziale sulla pila: F_{attr.} = 273.5 KN
- Frenatura: F = 257.6 KN

Prima di passare all'analisi della pila e della sua fondazione riportiamo di seguito alcune immagini che le illustrano.

Per quanto riguarda le pile le verifiche verranno effettuate sulla sezione allo spiccato, per le fondazioni su pali con zattera alta 1.8 m le verifiche che si effettueranno sono quelle sui pali, in quanto la zattera è dimensionata per essere in grado di resistere sicuramente alle reazioni che gli possono trasmettere i pali del 1200 che si trovano sotto di essa.

4.1. Analisi sismica semplificata

Per la pila in esame è possibile effettuare l'analisi semplificata in quanto è verificata la condizione che la massa efficace della pila è inferiore ad 1/5 di quella dell'impalcato ad essa collegato, infatti considerando che il presente impalcato è costituito da 2 campate da 30 m, si ha:

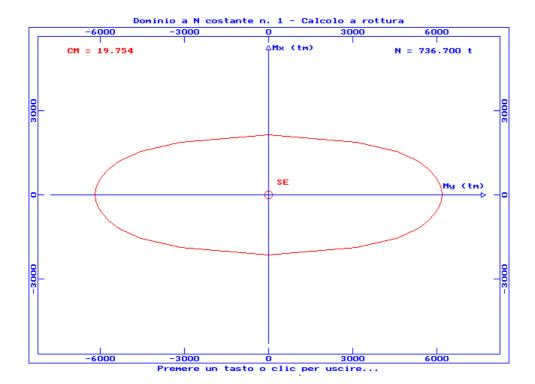
$$M_{IMP,30} = 743.37 \text{ KN}_m$$

 $M_{PILA} = 199.15 \text{ KN}_m$

$$\begin{split} M_{PILA,eff} &= 99.6 \text{ KN}_m \\ M_{IMP,long} &= 1486.8 \text{ KN}_m \\ M_{IMP,trasy} &= 743.4 \text{ KN}_m \end{split}$$

Quindi nel complesso le masse sismiche da considerare nell'analisi sono:

 $\begin{aligned} M_{long} &= 1586.4 \text{ KN}_m \\ M_{trasv} &= 843 \text{ KN}_m \end{aligned}$


Considerando che sotto i carichi permanenti la N alla base della pila è pari a 9246 KN e che l'armatura è quella mostrata nell'immagine seguente (D16 sui lati semicircolari della pila e D26 per il resto): si ha che i momenti resistenti di progetto sono rispettivamente:

 $M_{Rd,long} = 21448 \text{ KNxm}$ $M_{Rd,trasv} = 61874 \text{ KNxm}$

come si può vedere dal seguente dominio di resistenza:

Quindi la rigidezza secante efficace, che può essere calcolata secondo la seguente formula:

$$I_{\text{eff}} = 1.2 \text{ x } M_{\text{R,d}} / (E_{\text{c}} \text{ x } \phi_{\text{v}})$$

dove E_c è il modulo di elasticità del calcestruzzo e ϕ_y è la curvatura di snervamento, è pari in direzione longitudinale a 0.39 m⁴, da cui la rigidezza della pila alta 8.8 m è pari:

$$K_1 = 3 \times E \times I / h^3 = 61297 \text{ KN/m}$$

In conclusione si ha che il periodo in senso longitudinale della pila è pari a:

$$T_1 = 2\pi x (M/K)^{1/2} = 1.01 s$$

Trasversalmente il calcolo non è stato condotto in quanto il periodo cade sicuramente sulla parte ad accelerazione costante del diagramma e quindi non è necessario sapere il sul valore per determinare quello dell'azione sismica.

- Per quanto riguarda le sollecitazioni agli S.L.U. si ha che alla base della pila esse sono pari a:

$$\begin{aligned} F_1 &= M_{long} \ x \ S_{long} = 1586.4 \ x \ 1.52 = 2406 \ KN & M_1 &= F_1 \ x \ h = 2170 \ KNxm \\ F_t &= M_{trasv} \ x \ S_{trasv} = 843 \ x \ 6.1 = 5139 \ KN & M_1 &= F_1 \ x \ h = 45226 \ KNxm \end{aligned}$$

Naturalmente gli spettri di progetto utilizzati sono stati tagliati per i coefficienti di duttilità q della pila nelle due direzioni, che corrispondono data la geometria della pila a 3.5 in direzione longitudinale e a 1.76 in quella trasversale.

I coefficienti di sicurezza allo stato limite ultimo sotto tali azioni sismiche sono pari rispettivamente per il sisma longitudinale e trasversale a 1.01 e a 1.37, confermando così il fatto delle spiccate caratteristiche duttili della pila specialmente in senso longitudinale.

Per quanto riguarda le fondazioni allo S.L.U. esse devono essere dimensionate con i valori delle sollecitazioni che vengono fuori dall'applicazione del metodo della Gerarchia delle Resistenze.

Quindi considerando i due seguenti coefficienti di amplificazione per le sollecitazioni longitudinali e trasversali:

$$\gamma_{0,1} = 1.4$$
 $\gamma_{0,t} = 1.052$

si ha che le sollecitazioni da applicare alla base della pila per la verifica dei pali sono:

Sisma longitudinale

 $N = 9246 \, KN$

 $M_c = 30027 \text{ KN x m}$

 $T_c = 3412 \text{ KN}$

Sisma trasversale

 $N = 9246 \, KN$

M = 64968 KN x m

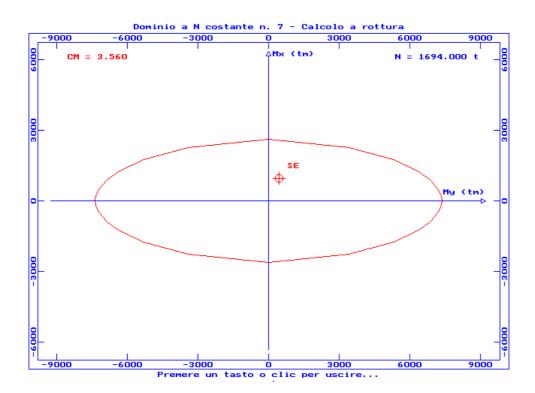
T = 7382 KN

- Per quanto riguarda le sollecitazioni agli S.L.E. si ha che le forze prodotte applicate in testa alla pila sono pari a:

 $F_1 = 1926 \text{ KN}$

 $F_t = 2067 \text{ KN}$

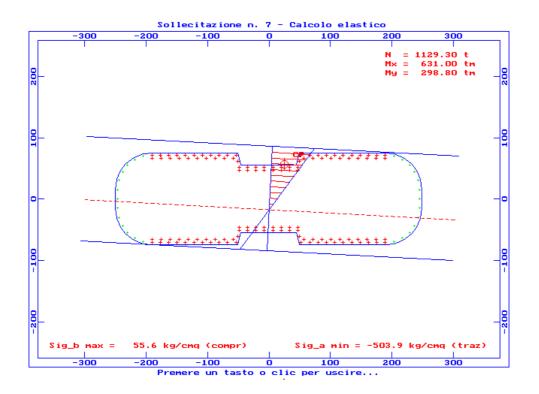
4.1.1. <u>Verifiche alla base della pila</u>

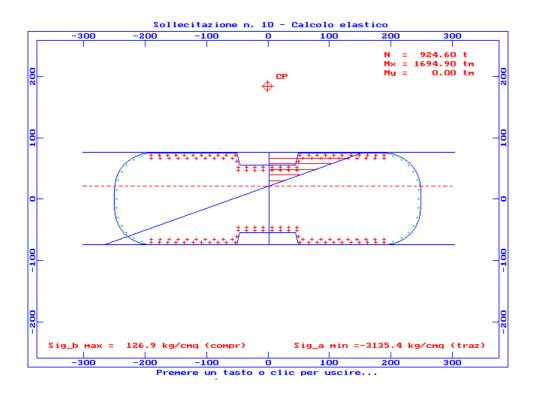

4.1.1.1. S.L.U.

Le sollecitazioni e i coefficienti di sicurezza in condizione sismiche sono stati già esposti nel paragrafo precedente quindi qui ci si sofferma sulla parte statica, dove i valori sono i seguenti:

slu	N	MI	Mt	TI	Tt
UI	13869	3604	4950	410	563
UII (1)	18192	3604	7721	410	338
UII (2)	16940	6059	6462	410	338
UII (3)	16187	3604	11763	410	338
UII (4)	15528	4931	9086	410	338
UIII (1)	18192	7009	5741	797	113
UIII (2)	16940	9465	4482	797	113
UIII (3)	16187	7009	9783	797	113
UIII (4)	15528	8337	7106	797	113

La combinazione che risulta essere la più gravosa è la UIII(2), per la quale si ha comunque un coefficiente di sicurezza pari a 3.56, come si può notare dal dominio di resistenza seguente.




4.1.1.2. S.L.E. Le sollecitazioni agenti alla base della pila sono:

sle	N	MI	Mt	TI	Tt
Al	9246	2402	3300	273	375
All (1)	12128	2402	4487	273	150
All (2)	11293	4039	3648	273	150
AII (3)	10791	2402	7182	273	150
All (4)	10352	3287	5397	273	150
AIII (1)	12128	4673	3827	531	75
AIII (2)	11293	6310	2988	531	75
AIII (3)	10791	4673	6522	531	75
AIII (4)	10352	5558	4737	531	75
AV (long)	9246	16949	0	1926	0
AV (trasv)	9246	0	18190	0	2067

Le combinazioni più gravose sono la AIII (2) tra quelle in condizione statica e la AV (long) tra quelle in condizione sismica; le loro verifiche sono riportate nell'ordine nella pagina seguente.

4.1.2. <u>Verifiche dei pali</u>

sle	N	MI	Mt	TI	Tt
Al	12623	2894	3975	273	375
All (1)	15505	2894	4757	273	150
AII (2)	14670	4531	3918	273	150
AII (3)	14168	2894	7452	273	150
AII (4)	13729	3779	5667	273	150
AIII (1)	15505	5629	3962	531	75
AIII (2)	14670	7266	3123	531	75
AIII (3)	14168	5629	6657	531	75
AIII (4)	13729	6514	4872	531	75
AV (long)	12623	20416	0	1926	0
AV (trasv)	12623	0	21910	0	2067

slu	N	MI	Mt	TI	Tt
UI	18935	4341	5963	410	563
UII (1)	23258	4341	8328	410	338
UII (2)	22005	6796	7070	410	338
UII (3)	21252	4341	12371	410	338
UII (4)	20594	5668	9693	410	338
UIII (1)	23258	8443	5943	797	113
UIII (2)	22005	10898	4685	797	113
UIII (3)	21252	8443	9986	797	113
UIII (4)	20594	9770	7308	797	113
Sisma long GR	12623	36169	0	3412	0
Sisma Trasv GR	12623	0	78256	0	7382

Di seguito sono riportate le sollecitazioni ad intradosso fondazione sia per lo S.L.U. che per lo S.L.E.

sle	1	2	3	4	5	6	Т
Al	1669	1889	2110	2097	2318	2539	77
All (1)	2106	2370	2634	2534	2799	3063	52
AII (2)	1892	2109	2327	2563	2781	2998	52
AII (3)	1733	2147	2561	2162	2576	2990	52
AII (4)	1693	2008	2323	2253	2568	2883	52
AIII (1)	1947	2167	2387	2781	3001	3221	89
AIII (2)	1733	1907	2080	2810	2983	3157	89
AIII (3)	1575	1944	2314	2408	2778	3148	89
AIII (4)	1535	1806	2076	2500	2771	3041	89
AV (long)	592	592	592	3616	3616	3616	321
AV (trasv)	887	2104	3321	887	2104	3321	345

slu	1	2	3	4	5	6	Т
UI	2503	2834	3165	3146	3477	3809	116
_							
UII (1)	3092	3555	4017	3735	4198	4660	88
UII (2)	2771	3164	3557	3778	4171	4564	88
UII (3)	2533	3220	3908	3176	3864	4551	88
UII (4)	2474	3012	3551	3314	3852	4391	88
UIII (1)	2921	3251	3581	4171	4502	4832	134
UIII (2)	2600	2860	3120	4215	4475	4735	134
UIII (3)	2362	2917	3471	3613	4167	4722	134
UIII (4)	2303	2709	3115	3750	4156	4562	134
Sisma long GR	-575	-575	-575	4783	4783	4783	569
Sisma Trasv GR	-2244	2104	6451	-2244	2104	6451	1230
						·	·

Da essi si ottengono i seguenti valori dei carichi sui pali.

Che utilizzando il metodo della linea elastica per il calcolo del momento agente sul palo danno come combinazioni più gravose le seguenti:

4.1.2.1. S.L.U.

dati geometrici del palo

$$\Phi = \begin{array}{c|c} \hline & 1200 & \textbf{mm} \\ \hline & \text{cls Rck=} & 25 & \textbf{MPa} \\ \hline \end{array}$$

$$E = 2,85E+07 \text{ KN/m}^2$$

 $J = 1,02E-01 \text{ m}^4$

Le azioni assiale ed orrizzontale agenti in testa palo sono:

Nmax =
$$6.451$$
 KN
H = 1.230 KN

Nmin =
$$-2.244$$
 KN
H = 1.230 KN

Hmax= 1230 KN

modulo di elasticità del terreno $\mathbf{Es} = 30000 \quad \mathbf{KN/mq}$ tratto di palo libero $\mathbf{h} = \boxed{0} \quad \mathbf{m}$

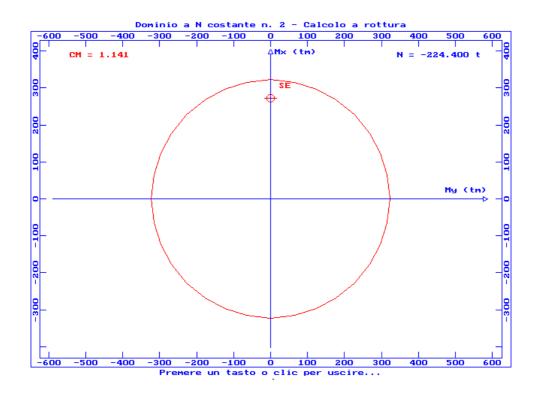
vincolo testa palo c
lunghezza elastica del palo Lo = 4.43

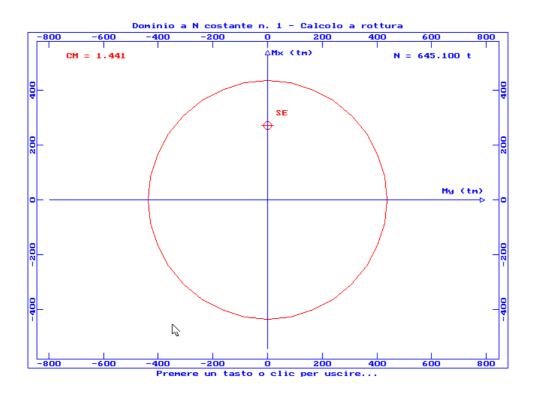
lunghezza elastica del palo Lo = 4,43 m momento flettente massimo testa pa Mmax = 2727 KNm

Da cui le azioni di pressoflessione sono:

verifica a pressoflessione dei pali:

N [KN] M [KNm]


cond 1 6451 2727


cond 2 -2244 2727

I domini riportati nella pagina seguente rappresentano le verifiche con le due coppie di N-M ora calcolate.

I pali sono armati con due strati di 24D26

4.1.2.2. S.L.E.

dati geometrici del palo

$$\Phi = \begin{array}{c} 1200 \\ \text{cls Rck} = \begin{array}{c} 25 \end{array} \quad \text{MPa}$$

$$E = 2,85E+07 \text{ KN/m}^2$$

 $J = 1,02E-01 \text{ m}^4$

Le azioni assiale ed orrizzontale agenti in testa palo sono:

Hmax= 321 **KN**

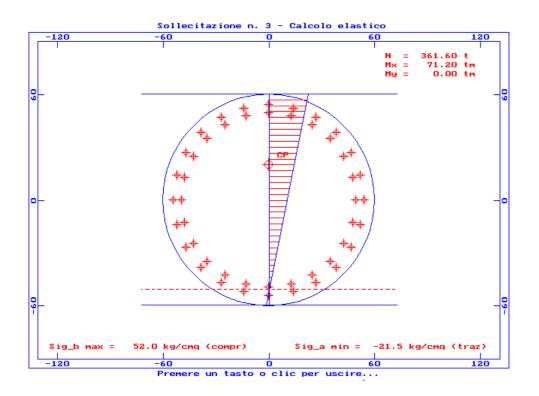
modulo di elasticità del terreno tratto di palo libero vincolo testa palo c

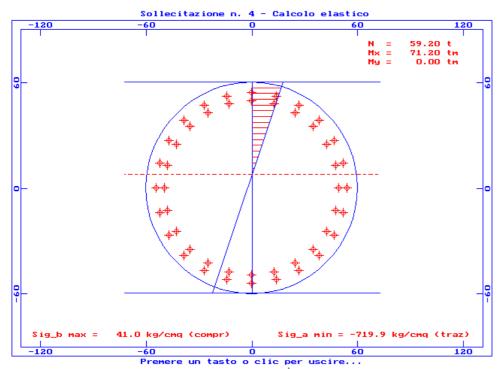
 $\mathbf{Es} = \begin{array}{c|c} 30000 & \mathbf{KN/mq} \\ \mathbf{h} = 0 & \mathbf{m} \end{array}$

lunghezza elastica del palo momento flettente massimo testa pa Lo = 4,43 m Mmax= 712 KNm

Da cui le azioni di pressoflessione sono:

verifica a pressoflessione dei pali:


N [KN] M [KNm]


cond 1 3616 712

cond 2 592 712

Le verifiche con le due coppie di N-M ora calcolate sono riportati nella pagina seguente.

5. Le spalle

Nel presente capitolo vengono trattate le analisi e le verifiche delle spalle del viadotto in esame.

Per quanto riguarda le analisi dei carichi e la determinazione delle sollecitazioni provenienti dall'impalcato si rimanda, come già detto nella premessa, alle relazioni di questo, mentre per le azioni agenti direttamente sulla spalla (pesi e spinte) il procedimento con cui vengono calcolate le sollecitazioni verrà illustrato qui di seguito.

Dato il carattere di relazione di predimensionamento che riveste la presente i calcoli seguenti sono stati svolti esclusivamente nell'ottica di determinare gli effetti globali sulla spalla (sollecitazioni sui pali), in quanto gli elementi soggetti ad azioni a carattere più locale, che sono la paraghiaia, il muro frontale, i muri andatori, la platea di fondazione e dove presenti le bandiere in appendice ai muri andatori, sono stati dimensionati in modo che sicuramente non avranno problemi di sorta a soddisfare le verifiche.

Nelle analisi che seguiranno sono state utilizzate le seguenti caratteristiche dei terreni:

 $\gamma = 19 \text{ KN/mc}$

 $\dot{C} = 0$

 $\Phi' = 38^{\circ}$

e le spinte da essi procurate sono state calcolate come segue:

- In condizioni statiche si utilizza il coefficiente K₀ di spinta a riposo
- In condizioni sismiche le forze possono essere così scritte:

$$F_{s,eq} = (M_{st} + M_{sol} + \gamma h^2) * PGA$$

dove M_{st} sono le masse strutturali e M_{sol} sono quelle non strutturali che possono essere considerate solidali come ad esempio finiture, il terzo termine in parentesi è la spinta delle terre su paramenti verticali e terrapieno orizzontale calcolata come da normativa (ricavata da Eurocodice 8). Il termine equivale a prendere una massa di terra di profondità pari all'altezza, essendo γ il peso di volume del terreno di rinterro.

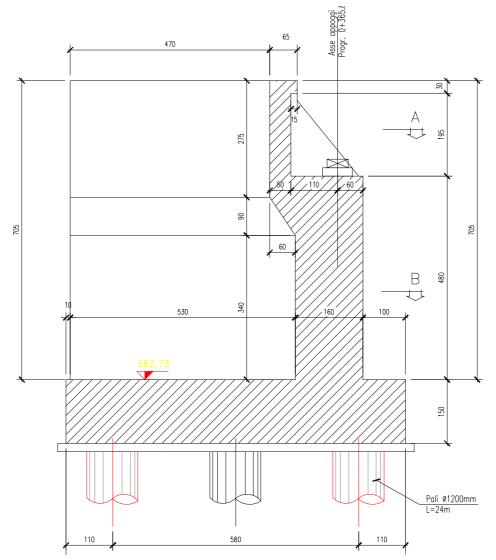
Tale assunzione è stata introdotta, in alternativa al criterio finora utilizzato (Mononobe-Okabe), per le strutture rigide completamente vincolate quali possono essere le spalle su pali, nel caso cioè non si sviluppi nel terreno uno stato di spinta attiva.

Naturalmente tali condizioni che portano ad utilizzare un metodo di calcolo della spinta più gravoso è valido finche non si sviluppano nel terreno di fondazione fenomeni di plasticizzazione che portano a spostamenti o rotazioni che innescano l'attivazione della spinta attiva; quindi in pratica si può affermare che tale metodo è valido per sismi da stato limite di esercizio, che è quanto faremo per le spalle in questa fase di predimensionamento.

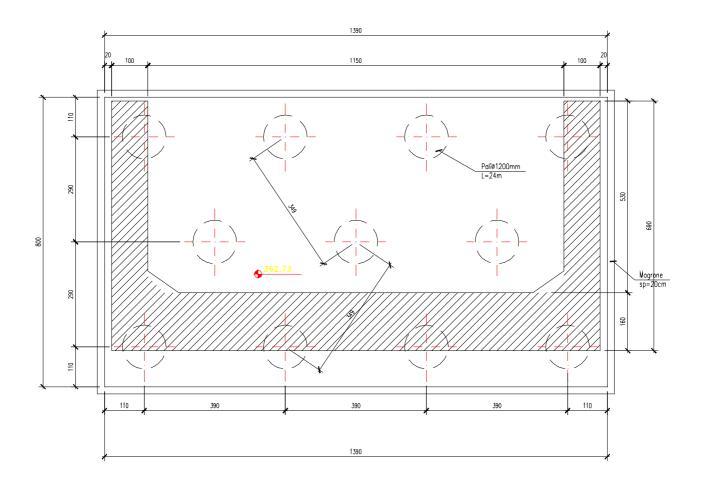
Le verifiche ovviamente verranno condotte in modo da assicurarsi che per tale evento le strutture di progetto non subiscano danni (verifiche allo stato limite di danno, le strutture devono rimanere in campo elastico).

Il periodo di ritorno assunto per questo evento è quello indicato dall'Eurocodice 8 di 95 anni, da cui è possibile ricavare un'intensità attesa per questo evento sismico a partire da quella specificata in normativa per l'evento distruttivo con periodo di ritorno pari a 475 anni, l'espressione utilizzata per scalare l'accelerazione massima attesa al suolo (PGA) è la seguente:

$$PGA_{95} = PGA_{475} * (95/475)^{0.35} = 0.57 PGA_{475}$$


Da notare che, non avendosi dati storici sufficienti per una analisi rigorosa, si è assunto un valore prudenziale per l'esponente della formula precedente all'interno di un range suggerito dall'Eurocodice stesso.

In definitiva per il terremoto con periodo di ritorno di 95 anni si assume per l'area di progetto (I categoria) un PGA = 0.2 g.


Passiamo ora ai calcoli relativi alla spalla A, per quella B non vengono effettuati in quanto essa è identica alla A con l'unica differenza che consiste in un'altezza minore, che quindi la porta a trovarsi in situazioni di carico sicuramente migliori anche se di poco.

5.1. Spalla A

Riportiamo prima di esporre i calcoli due immagini illustrative della geometria della spalla.

5.1.1. Analisi dei carichi

I carichi agenti possono dividersi in quelli trasmessi dall'impalcato alla spalla ed in quelli dovuti al peso proprio di questa e alle azioni agenti a tergo di essa.

I momenti calcolati nei paragrafi seguenti sono determinati rispetto al baricentro dell'intradosso della fondazione.

PESO PROPRIO DELLA STRUTTURA

ELEMENTO	$b_l[m]$	Area	$b_t[m]$	h [m]	V [m ³]	P [kN]	e _l [m]	e _t [m]	e _v [m]	$m_1[kN m]$	m _t [kN m]
Muro frontale	1,60	-	13,50	4,80	103,68	2592,0	2,20	0,00	3,90	5702,4	0,0
Paraghiaia (con Hmin)	0,50	-	13,50	2,25	15,19	379,7	1,05	0,00	7,43	398,7	0,0
Paraghiaia(tratto variabile)+ area dente	0,00	0,60	13,50	0,00	8,10	202,5	1,05	0,00	7,43	212,6	0,0
Muri andatori inferiori	5,30	0,00	2,00	4,30	45,58	1139,5	-1,25	0,00	3,65	-1424,4	0,0
Muro andatorio superiore SX	4,70	-	0,50	2,90	6,82	170,4	-1,45	6,50	7,25	-247,0	1107,4
Muro andatorio superiore DX	4,70	-	0,50	2,90	6,82	170,4	-1,45	-6,50	7,25	-247,0	-1107,4
Platea di fondazione	8,00	-	13,90	1,50	166,80	4170,0	0,00	0,00	0,75	0,0	0,0
						8824,4				4395,2	0,0
Distance I and a laterage many for at 1. 1.	1.1 .	. 1 .	1' C 1 '				- 1				•

5.1.1.1. Pesi propri degli elementi della spalla

PESO DEL RIEMPIMENTO SULLA ZATTERA DI FONDAZIONE

ELEMENTO	b _i [m]	Area	b _t [m]	h [m]	V [m³]	P [kN]	e _i [m]	e _t [m]	e _v [m]	$m_1[kN m]$	m _t [kN m]
riempimento interno H min (misto ceme	-	55	-	2,90	159,5	3030,5	-1,45	0	7,25	-4394,2	0,0
riempimento interno (terreno da rilevato	-	61,9	-	4,30	266,2	5057,2	-1,25	0	3,65	-6321,5	0,0
		8087,7				-10715,8	0,0				

5.1.1.2. Peso del riempimento sulla zattera di fondazione

SOVRACCARICHI PERMANENTI

ELEMENTO	L (m)	Area (m)	$\gamma [KN/m^3]$	$\gamma [KN/m^2]$	γ [KN/m]	P [kN]	e _i [m]	e _t [m]	e _v [m]	$m_1[kN m]$	m _t [kN m]
Pavimentazione	-	55	-	2,5	-	137,5	-1,45	0	7,10	-199,4	0,0
Barriere*2	5,45	-	-	-	1,50	16,4	-1,2	0	7,75	-19,6	0,0
Velette*2	5,45	-	-	-	3,25	35,4	-1,2	0	7,00	-42,5	0,0
						189,3				-261,5	0,0

5.1.1.3. Peso dei sovraccarichi permanenti sulla spalla

ACCIDENTALI

ACCIDENTAL											
ELEMENTO	L (m)	Area (m)	$\gamma [KN/m^3]$	$\gamma [KN/m^2]$	γ [KN/m]	P [kN]	e _i [m]	e _t [m]	e _v [m]	$m_1[kN m]$	m _t [kN m]
Sovraccarico	-	55	-	20	-	1100,0	-1,45	0	-	-1595,0	0,0

5.1.1.4. Peso degli accidentali sulla spalla

SPINTA DEL TERRENO									
$\gamma_{\text{terr}}[\text{KN/m}^3] \phi [^\circ] \text{K0} \text{H}_{\text{sp}}[\text{m}] \text{b}_{\text{sp}}[\text{m}] \text{F}[\text{kN}] \text{e}_{\text{v}}[\text{m}] \text{m}_{\text{I}}[\text{kN} \text{ m}]$									
19 38 0,38 8,70 13,5 3766 2,90 10846									

<u>5</u>.1.1.5. Spinta del terreno a tergo della spalla

5.1.1.6. Spinta dovuta ai sovraccarichi permanenti a tergo della spalla

SPINTA DOVUTA AL SOVRACCARICO PERMANENT								
	φ [°]	K0	H _{sp} [m]	q(KN/m)	F [kN]	e _v [m]	m ₁ [kN m]	
	38	0,38	8,70	31,25	104	4,35	455	

5.1.1.7. Spinta dovuta ai sovraccarichi accidentali 20 KN/mq

SPINTA DOVUTA AL SOVRACCARICO ACCIDENTALE 20 KM										
	φ [°]	K0	H _{sp} [m]	q(KN/m)	F [kN]	e _v [m]	m _l [kN m]			
	38	0,38	8,7	250	836	4,35	3636			

5.1.1.8. Spinta in fase sismica del terreno

 $F_{s,eq} = 3883 \text{ KN}$ $e_v = 4.35 \text{ m}$ $Ms_{eq} = 16891 \text{ KNxm}$

5.1.1.9. Azione sismica sulle masse della spalla

Riportiamo il calcolo del baricentro delle masse:

PESO PROPRIO SPALLA E PERMANENTI PORTATI

ELEMENTO	P [kN]	e _v [m]	m _i (kg)	m e _v
Muro frontale	2592,0	3,90	26422	103046
Paraghiaia (con Hmin)	379,7	7,43	3870	28738
Paraghiaia(tratto variabile)+ area dente	202,5	7,43	2064	15327
Muri andatori inferiori	1139,5	3,65	11616	42397
Muro andatorio superiore SX	170,4	7,25	1737	12591
Muro andatorio superiore DX	170,4	7,25	1737	12591
Muro in c.a. in SX	0,0	0,00	0	0
Parte rimanente del marciapiede in SX	0,0	0,00	0	0
Parte rimanente del cordolo in DX	0,0	0,00	0	0
Platea di fondazione	4170	0,75	42508	31881
Pavimentazione	137,5	7,10	1402	9952
Barriere*2	16,4	7,75	167	1292
Velette*2	35,4	7,00	361	2528
	9014		91883	260342
				z=b _v
				2.83

 $b_v = (\Sigma m_i e_{vi}) / (\Sigma m_i)$

Fs = 1803 KN Ms = 5108 KNxm

I valori calcolati in questo paragrafo valgono sia in senso longitudinale che trasversale alla spalla.

5.1.1.10. Azioni provenienti dall'impalcato

Nella tabella seguente vengono riportate le azioni trasmesse dall'impalcato alla spalla attraverso gli apparecchi d'appoggio.

	N	MI	Mt	TI	Tt
pp+port	3646	8750			
Acc N-MI	2047	4913	2328		
Acc Mt I-MI	1106	2654	4077		
Acc Mt I	1106	2654	4077		
Vento					188
Sisma I				0	
Sisma t					1034
Attr				237	

5.1.2. <u>Determinazione delle sollecitazioni e verifiche</u>

In questo paragrafo si determinano le sollecitazioni sui pali e si effettua la loro verifica strutturale agli S.L.E..

5.1.2.1. Sollecitazioni all'intradosso fondazione combinate

Spalla

sle	N	MI	Mt	TI	Tt
Al	17101	4718	0	3870	0
AII (2)	18201	6759	0	4706	0
AII (3)	18201	6759	0	4706	0
AII (4)	17101	4718	0	3870	0
AIII (2)	18201	6759	0	4706	0
AIII (3)	18201	6759	0	4706	0
AIII (4)	17101	4718	0	3870	0
AV (long)	17101	15871	0	5790	0
AV (trasv)	17101	4718	5108	3870	1803

Impalcato

sle	N	MI	Mt	TI	Tt
Al	3646	10326	1247	237	188
AII (2)	5693	15239	2827	237	75
AII (3)	4752	12980	4576	237	75
AII (4)	4752	12980	4576	237	75
AIII (2)	5693	15239	2577	237	38
AIII (3)	4752	12980	4326	237	38
AIII (4)	4752	12980	4326	237	38
AV (long)	3646	8750	0	0	0
AV (trasv)	3646	8750	6873	0	1034

5.1.2.2. Combinazioni di verifica intradosso fondazioni

sle	N	MI	Mt	TI	Tt
Al	20747	15045	1247	4107	188
AII (2)	23894	21999	2827	4943	75
AII (3)	22953	19740	4576	4943	75
AII (4)	21853	17699	4576	4107	75
AIII (2)	23894	21999	2577	4943	38
AIII (3)	22953	19740	4326	4943	38
AIII (4)	21853	17699	4326	4107	38
AV (long)	20747	24621	0	5790	0
AV (trasv)	20747	13469	11981	3870	2836

5.1.2.3. Sollecitazioni sui pali

sle	1	2	3	4	5	6	7	8	9	10	11	Τ
Al	1200	1227	1253	1280	1859	1886	1913	2492	2519	2546	2572	374
All (2)	1137	1197	1257	1318	2112	2172	2233	3027	3087	3147	3208	449
AII (3)	1092	1190	1288	1385	1989	2087	2184	2788	2886	2983	3081	449
AII (4)	1080	1178	1275	1373	1889	1987	2084	2600	2698	2796	2894	373
AIII (2)	1145	1200	1255	1310	2117	2172	2227	3035	3090	3145	3200	449
AIII (3)	1100	1193	1285	1377	1994	2087	2179	2796	2888	2981	3073	449
AIII (4)	1088	1180	1273	1365	1894	1987	2079	2608	2701	2793	2886	373
AV (long)	829	829	829	829	1886	1886	1886	2944	2944	2944	2944	526
AV (trasv)	924	1180	1436	1692	1630	1886	2142	2081	2337	2593	2849	436

Valori massimi

	N (KN)	T (KN)	
Condizioni statiche			
	3208	449	
	1080	373	
	1088	373	
Condizioni sismiche	2849	436	Sisma t
	924	436	Sisma t
	2944	526	Sisma I
	829	526	Sisma I

5.1.2.4. Determinazione delle sollecitazioni di verifica sui pali tramite il metodo della linea elastica

dati geometric<u>i del palo</u>

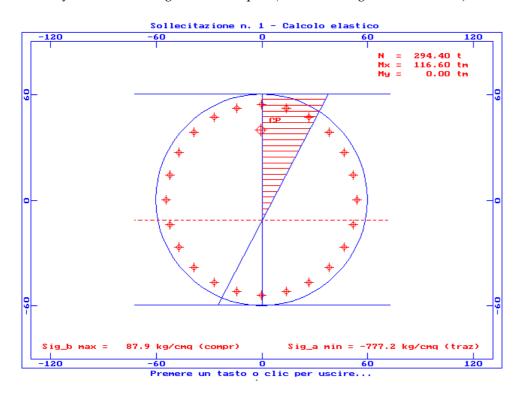
$$\Phi = \begin{array}{c|c} \hline & 1200 & \textbf{mm} \\ \hline & \text{cls Rck=} & 25 & \textbf{MPa} \\ \hline \end{array}$$

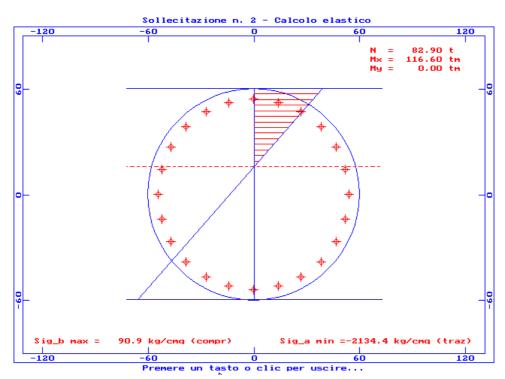
$$E = 2,85E+07 \text{ KN/m}^2$$

 $J = 1,02E-01 \text{ m}^4$

Le azioni assiale ed orrizzontale agenti in testa palo sono:

modulo di elasticità del terreno tratto di palo libero vincolo testa palo c


lunghezza elastica del palo momento flettente massimo testa pa


Da cui le azioni di pressoflessione sono:

verifica a pressoflessione dei pali:						
	N [KN]	M [KNm]				
cond 1	2944	1166				
cond 2	829	1166				

5.1.2.5. Verifiche strutturali agli S.L.E. dei pali (armatura longitudinale 24D26)

6. Verifiche geotecniche

In questo capitolo sono esposti i risultati delle principali verifiche geotecniche delle opere di fondazione. I criteri di calcolo e di verifica sono esposti nel dettaglio nella Relazione geotecnica generale (D1RBGE00001) alla quale si rimanda anche per il commento di dettaglio delle indagini e per la caratterizzazione geotecnica dei terreni. In questa sede tali aspetti vengono ripresi solo sinteticamente. Sono inoltre esposti e commentati i risultati dei calcoli relativi alle opere in oggetto.

6.1. Inquadramento e schema geotecnico

Il viadotto attraversa a mezza costa una piccola incisione torrentizia. Il substrato della zona è costituito dalla formazione delle Argille grigio-azzurre, coperta in superficie da una coltre di alterazione e detritico-eluviale.

Nel sito non sono state eseguite indagini dirette. Per la ricostruzione della situazione di sottosuolo si è fatto riferimento agli studi geologici e in particolare alla carta geologica e al profilo geologico. L'indagine geologica non ha individuato per questo settore fenomeni di instabilità.

Con riferimento alla caratterizzazione geotecnica esposta nella Relazione Geotecnica generale prima citata e ai risultati delle indagini eseguite nel sito, è stato definito il seguente schema di calcolo. di calcolo.

Sono stati definiti tre strati sub-paralleli al piano di campagna

```
Da 0 a 5 m argille molto alterate
peso di volume
                                           = 19 \text{ kN/m}^3;
resistenza a taglio non drenata
                                                   = 50 \text{ kPa};
Da 5 a 15 m argille mediamente alterate
peso di volume
                                           = 19.5 \text{ kN/m}^3;
                                  γ
resistenza a taglio non drenata
                                                   = 100-200 \text{ kPa};
Da 15 a 30 m argille poco alterate o integre
peso di volume
                                           = 20 \text{ kN/m}^3;
resistenza a taglio non drenata
                                                   = 200-300 \text{ kPa}.
                                           C,,
```


6.2. Risultati delle verifiche geotecniche

Le combinazioni di carico agenti sui singoli pali sono stati definiti nei capitoli precedenti. Nella tabella seguente sono riportati i coefficienti di sicurezza relativi al calcolo della lunghezza dei pali. I carichi relativi alle combinazioni di carico sismiche sono state distinte con il simbolo (*).

Per quanto riguarda la verifica dei pali alle forze orizzontali, condotta con il metodo di Matlock&Reese (v. Relazione geotecnica generale), i risultati corrispondono a quelli condotti per la verifica a pressoflessione del palo, riportati nel capitolo precedente, e pertanto si omettono.

I criteri di calcolo e di verifica delle fondazioni sono riportati nel dettaglio nella Relazione Geotecnica generale. In questa sede sono riportati solo i risultati delle verifiche. Queste sono state sviluppate con l'ausilio di fogli di calcolo elettronico. I relativi tabulati di calcolo sono riportati in coda al paragrafo.

Tab. 4.1 Risultati delle verifiche

LUNGHEZZA DEI PALI

Appoggio	L pali	D pali	Carichi sul palo	Coefficiente	e di sicurezza
	(m)	(mm)	N_{max} (kN)	F_s tot	F _s lat
Spalla A	24	1200	3208	2.5	1.68
Pila	24	1200	3616 (*)	2.47	1.58

(*) combinazioni sismiche

Progetto definitivo: Adeguamento delle S.S. 81-84 Tratto Guardiagrele-Est Innesto S.S. 652 "Val di Sangro" D1-CL-VI02-001.doc

tabulati di calcolo pali

Viadotto Guardiagrele. Spalla A. Pali 1200 mm

Calcolo del carico limite per un palo trivellato in cls

			oaiooio a	ci oarioo iii	mic per c				
parametri geometrici del palo									
profondità testa palo	t.p	0	diametro	d.p	1,50				
profondità punta palo	S_t	24	perimetro	p.p	4,71				
lunghezza utile palo	L_{u}	24	area	a.p	1,77				
profondità falda	H_{-f}	3,5		$L_u/d.p.$	16,00				

ilato III Cis		
convenzione		
condizioni drenate	1	
condizioni non drenate	0	
unità di misura [t,m]		

Strat	o 1
H. ₀	0
H. ₁	5
S. ₁	5
L _{u.1}	5
parametri	terreno
condizioni	0
$\gamma_{\cdot 1}$	1,9
arphi · 1	0
C. ₁	0,0
K. ₁	0,5
C _{u.1}	5,0
q _{a.1}	4,0
q _{a.1max}	4,0
resistenza	laterale
p*k*tan $\varphi_{\cdot 1}$	0,00
$\Sigma \gamma_{i} \mathbf{z}_{i}$	22,63
Qs.1	94,25

Strato 2					
H. ₁	5				
H. ₂	15				
S. ₂	10				
L _{u.2}	10				
paramet	ri terreno				
condizioni	0				
γ.₂	2,00				
arphi .2	0				
C. ₂	0,0				
K. ₂	0,5				
C _{u.2}	10,0				
q _{a.2}	4,0				
q _{a.2max}	4,0				
resistenza laterale					
p*k*tan $\varphi_{\cdot 2}$	0,00				
$\Sigma \gamma_{i} \mathbf{z}_{i}$	130,00				
Qs.2	188,50				

Strat	ю 3
H. ₂	15
H. ₃	infinito
S. ₃	infinito
L _{u.3}	9
parametri	terreno
condizioni	0
γ·3	2,0
φ.₃	0
C. ₃	0,0
K. ₃	0,5
C _{u.3}	25,0
q _{a.3}	10,0
Q _{a.3max}	10,0
resistenza	laterale
p*k*tan φ_3	0,00
$\Sigma \gamma_{i} z_{i}$	202,50
Qs.3	424,12

Parametri	di output				
Sv efficace	27,00				
Sv totale	57,50				
Bereza	ntzev				
L/D=Lu/d.p.	525,72				
L/D=4	517,79				
L/D=32	536,29				
fattori adim	ensionali				
N_{q}	0,0				
N _c	0,0				
$N_{c.u}$	9,0				
resistenza alla punta					
Qp_d	0,00				
Qp_u	499,22				
Qp	499,22				

Dati di input

Parametri del terreno

Strato 1	L	<u> </u>	Strato 2		Strato 2		Geometria del palo
H.0	=	0,0	H.1 =	5,0	H.2 =	15,0	d.p = 1,5
H.1	=	5,0	H.2 =	15,0	H.3 =	infinito	t.p = 0,0
S.1	=	5,0	S.2 =	10,0	S.3 =	infinito	St = 24,0
Lu.1	=	5,0	Lu.2 =	10,0	Lu.3 =	9,0	Lu = 24,0
γ 1	=	1,9	γ 2 =	2,00	γ 3 =	2,0	W' = 25,4
φ 1	=	0	φ 2 =	0	φ 3 =	0	
c1	=	0,0	c2 =	0,0	c3 =	0,0	
cu.1	=	5,0	cu.2 =	10,0	cu.3 =	25,0	
qa1.max	=	4,0	qa2.ma: <u>=</u>	4,0	qa3.ma: <u>=</u>	10,0	
K 1	=	0,5	K2 =	0,5	K3 =	0,5	

Calcolo del	carico	limite	del	palo	

carico limite		
Qlim = SQs.i + Qp	=	1206,08

tensioni alla base	e del pa	lo <u>i</u>	resistenza laterale	carico ammissibile	
σν efficace =	27,00	Qs.1 =	94,25	Qamm = Qlim / 2.5 =	482,43
σv totale =	57,50	Qs.2 =	188,50	carico agente	
fattori adimensio	nali	Qs.3 =	424,12	Qag	320,80
Nq Berezant =	0,0	$\Sigma Qs.i$ =	706,86	coefficiente di sicurezza	
Nc =	0,0	<u>re</u>	esistenza alla punta	$F_{stot} = (Qlim-W')/Qag =$	3,68
Nc.u =	9,0	Qp =	499,22	$F_{slat} = (Qs-W')/Qag =$	2,12

Nota: tutte le grandezze sono espresse in tonnellate e metri

Viadotto Guardiagrele. Plla. Pali 1200 mm

Calcolo del carico limite per un palo trivellato in cls

			<u> </u>	uo. ou	, , , , , , , , , , , , , , , , , , ,
parametri geometrici del palo					
profondità testa palo	t.p	1	diametro	d.p	1,20
profondità punta palo	S_t	25	perimetro	p.p	3,77
lunghezza utile palo	L_{u}	24	area	a.p	1,13
profondità falda	H. _f	3,5		$L_u/d.p$	20,00

convenzione
condizioni drenate 1
condizioni non drenate 0
unità di misura [t,m]

Strato 1				
H. ₀	0			
H. ₁	5			
S. ₁	5			
L _{u.1}	4			
parametri	terreno			
condizioni	0			
γ.1	1,9			
arphi · 1	0			
C. ₁	0,0			
K. ₁	0,5			
C _{u.1}	5,0			
q _{a.1}	4,0			
q _{a.1max}	4,0			
resistenza laterale				
p*k*tan φ_{+1}	0,00			
$\Sigma \gamma_{i} \mathbf{z}_{i}$	21,68			
Qs.1	60,32			

Strato 2				
H. ₁	5			
H. ₂	15			
S. ₂	10			
$L_{u.2}$	10			
parametri	i terreno			
condizioni	0			
$\gamma_{\cdot 2}$	2,00			
$\varphi_{\cdot 2}$	0			
C. ₂	0,0			
K. ₂	0,5			
C _{u.2}	10,0			
q _{a.2}	4,0			
q _{a.2max}	4,0			
resistenza laterale				
p*k*tan $\varphi_{\cdot 2}$	0,00			
$\Sigma \gamma_{i} \mathbf{z}_{i}$	130,00			
Qs.2	150,80			

Strato 3				
H. ₂	15			
H. ₃	infinito			
S. ₃	infinito			
L _{u.3}	10			
parametr	i terreno			
condizioni	0			
γ.₃	2,0			
arphi .3	0			
C.3	0,0			
K. ₃	0,5			
C _{u.3}	25,0			
q _{a.3}	10,0			
q _{a.3max}	10,0			
resistenza laterale				
p*k*tan φ_3	0,00			
$\Sigma \gamma_{i} \mathbf{z}_{i}$	230,00			
Qs.3	376,99			

Parametri di output				
Sv efficace	28,00			
Sv totale	59,50			
Bereza	ntzev			
L/D=Lu/d.p.	528,36			
L/D=4	517,79			
L/D=32	536,29			
fattori adim	nensionali			
N_q	0,0			
N_c	0,0			
$N_{c.u}$	9,0			
resistenza	resistenza alla punta			
Qp_d	0,00			
Qp_u	321,76			
Qp	321,76			

carico limite

Dati di input

		Parametri del terreno			
Strato	<u>1</u>	Strato 2	Strato 2	<u>2</u>	Geometria del palo
H.0	= 0,0	H.1 = 5.0	H.2	= 15,0	d.p = 1,2
H.1	= 5,0	H.2 = 15,0	H.3	= infinito	t.p = 1,0
S.1	= 5,0	S.2 = 10,0	S.3	= infinito	St = 25,0
Lu.1	= 4,0	Lu.2 = 10,0	Lu.3	= 10,0	Lu = 24,0
γ 1	= 1,9	γ 2 = 2,00	γ 3	= 2,0	W' = 16,3
arphi1	= 0	φ 2 = 0	φ 3	= 0	
C1	= 0,0	c2 = 0,0	c3	= 0,0	
cu.1	= 5,0	cu.2 = 10,0	cu.3	= 25,0	
qa1.max	= 4,0	qa2.max = 4,0	qa3.max	= 10,0	
K1	= 0,5	K2 = 0,5	K3	= 0,5	

		Qlim = SQs.i + Qp	= 909,87
tensioni alla base del palo	<u>resistenza laterale</u>	<u>carico ammis</u>	<u>sibile</u>
σ v efficace = 28,00	Qs.1 = 60,32	Qamm = Qlim / 2.5	= 363,95
$\sigma v \text{ totale} = 59,50$	Qs.2 = 150,80	carico agente	
fattori adimensionali	Qs.3 = 376,99	Qag	361,60
Nq Berezantzev = 0,0	$\Sigma Qs.i = 588,11$	coefficiente di sicurezza	
Nc = 0,0	resistenza alla punta	$F_{stot} = (Qlim-W')/Qag$	= 2,47
Nc.u = 9,0	Qp = 321,76	$F_{slat} = (Qs-W')/Qag$	= 1,58

Calcolo del carico limite del palo

Nota: tutte le grandezze sono espresse in tonnellate e metri